Topic 9 -Matrices of Linear Transformations

Ex: Consider T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 defined by
 $T(\check{g}) = \begin{pmatrix}3 & 0\\ 8 & -1\end{pmatrix}\begin{pmatrix}\chi\\g\end{pmatrix} = \begin{pmatrix}3 & 0\\ 8 & -1\end{pmatrix}\begin{pmatrix}\chi\\g\end{pmatrix} = \begin{pmatrix}3 & 0\\ 8 & -1\end{pmatrix}$
In the last section we saw that $\begin{pmatrix}3 & 0\\ 8 & -1\end{pmatrix}$
hud eigenvalues $\lambda = 3, -1$ and corresponding
eigenvectors $\begin{pmatrix}1/2\\1\end{pmatrix}$ and $\vec{b} = \begin{pmatrix}0\\1\end{pmatrix}$.
Let $\vec{a} = \begin{pmatrix}1/2\\1\end{pmatrix}$ and $\vec{b} = \begin{pmatrix}0\\1\end{pmatrix}$.
So, $T(\vec{a}) = 3\vec{a}$ and $T(\vec{b}) = -\vec{b}$.
One can check that \vec{a} and \vec{b} are
linearly independent, so $\beta = [\vec{a}, \vec{b}]$
is a basis for \mathbb{R}^2 .
Check this out:
Suppose We change coordinate systems to β .
Suppose We change coordinate systems to β .
Suppose We change coordinate systems to β .
 $\vec{v} = c_1\vec{a} + c_2\vec{b}$.
Then,
 $T(\vec{v}) = T(c_1\vec{a} + c_2\vec{b})$
 $= A(c_1\vec{a} + c_2\vec{b})$
Then, $\vec{c}=2$ $\vec{c}=1$

$$= A(c_{1}a) + A(c_{2}b) = T(3)$$

$$= c_{1}Aa + c_{2}Ab$$

$$= c_{1}\cdot 3a + c_{2}(-b)$$

$$= 3c_{1}a - c_{2}b.$$
So, T turns B-coordinates $[v]_{p} = \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix}$
into B-coordinates $[v]_{p} = \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix}$
The matrix that does this is
$$\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$$
Since
$$\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} c_{1} \\ c_{2} \end{pmatrix} = \begin{pmatrix} 3c_{1} \\ -c_{2} \end{pmatrix}$$

$$= \begin{pmatrix} 3c_{1} \\ -c_{2} \end{pmatrix}$$

We are now going to develop a way to do this for any basis B and linear transformation T.

Def: Let
$$T: \mathbb{R}^{n} \to \mathbb{R}^{n}$$
 be a linear
transformation. Let $P = [\overline{v}_{1}, \overline{v}_{2}, ..., \overline{v}_{N}]$
be a basic for \mathbb{R}^{n} and \overline{v} be a basis for \mathbb{R}^{n} .
The matrix
 $[T]_{p}^{\overline{v}} = ([T(v_{1})]_{\overline{v}} | [T(v_{2})]_{\overline{v}} | ... | [T(v_{n})]_{\overline{v}})$
 $p \to as columns of matrix
 $T = ([T(v_{1})]_{\overline{v}} | [T(v_{2})]_{\overline{v}} | ... | [T(v_{n})]_{\overline{v}})$
 $p \to as columns of matrix
 $p \to as columns of matrix$
is called the matrix for T with respect
to p and \overline{v} . If $n=m$ and $\overline{v}=\overline{v}_{\overline{v}}$
then we just write $[T]_{\overline{p}}$ for $[T]_{\overline{p}}^{\overline{p}}$.
Theorem: With $T: \mathbb{R}^{n} \to \mathbb{R}^{n}$, $\overline{v}, \overline{v}$ as above
then one has that
 $[T(\overline{v})]_{\overline{v}} = [T]_{\overline{p}}^{\overline{v}} [\overline{v}]_{\overline{p}}$
 $T(\overline{v})_{\overline{v}} = [T]_{\overline{p}}^{\overline{v}} [\overline{v}]_{\overline{v}}$
 $T(\overline{v})_{\overline{v}} = [T]_{\overline{v}}^{\overline{v}} [\overline{v}]_{\overline{v}}$
 $T(\overline{v})_{\overline{v}} = [T]_{\overline{v}}^{\overline{v}} [\overline{v}]_{\overline{v}}$$$

$$\frac{E_{X:}}{above with T(\frac{x}{9}) = (\frac{3}{8} \cdot \frac{0}{1})(\frac{x}{9}) = (\frac{3x}{8x-9}),$$

and let $B = [\vec{a}, \vec{b}]$ where
 $\vec{a} = (\frac{1}{2}), \vec{b} = (\frac{0}{1}).$
So, β is a basis for \mathbb{R}^2 consisting of
eigenvectors of \mathbb{R}^2 .
Let's compute $[T]_{\beta} = [T]_{\beta}^{\beta}.$
We have
 $T(\vec{a}) = 3\vec{a} = 3\vec{a} + 0\vec{b}$
 $T(\vec{b}) = -\vec{b} = 0\vec{a} - \vec{b}$
 $Plog P$ Write the answer
into T in terms of P
Then,
 $[T]_{\beta} = ([T(\vec{a})]_{\beta} | [T(\vec{b})]_{\beta}) = (\frac{3}{0} \cdot 0)$
This is the matrix we got before.

What does it do?
You give it B-coordinates and it
computes T but gives you back

$$\beta$$
 coordinates.
 β coordinates.
For example, if $\vec{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ then
 $[T]_{\beta}[\vec{v}]_{\beta} = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}$
this means
 $[T(\vec{v})]_{\beta} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$
 $\vec{v} = 2\vec{a} + \vec{b}$
since
 $\begin{pmatrix} 3 & 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
this means
 $[T(\vec{v})]_{\beta} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
 $\vec{v} = 2\vec{a} + \vec{b}$
since
 $\begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
this means
 $[T(\vec{v})]_{\beta} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$
 $\vec{v} = 2\vec{a} + \vec{b}$
 $\vec{v} = 2\vec{b} + \vec{c}$

Ex:
Let
$$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$$
 be defined by $T(\frac{x}{9}) = \binom{1}{2} \binom{1}{9}$
So, $T(\frac{x}{9}) = \binom{x+9}{2x-9}$.
T is a linear transformation.
Consider the bases $B = [\binom{1}{9}, \binom{1}{1}] \leftarrow \mathbb{R}^{2}$ standard
basis
and $P' = [\binom{1}{1}, \binom{-1}{1}]$.
First we calculate $[T]_{P}^{B}$
 $T\binom{1}{0} = \binom{0+1}{2-0} = \binom{1}{2} = 1 \cdot \binom{1}{0} + 2 \cdot \binom{9}{1}$
 $T\binom{9}{1} = \binom{0+1}{0-1} = \binom{1}{-1} = 1 \cdot \binom{1}{0} - 1 \cdot \binom{9}{1}$
 $P\log P \text{ into } T = \exp ress answer
as P coordinates
Su,
 $[T]_{P}^{B} = ([T\binom{1}{9}]_{P} | [T\binom{9}{1}]_{P}) = (\binom{1}{2} - 1)$
Note this is the standard basis matrix for T.
It takes P coordinates as input, computer T
and gives you P coordinates as output.$

An example is:
Let
$$\vec{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
.
Then, $T(\vec{v}) = \begin{pmatrix} 1+2 \\ 2-2 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$
Note that $[\vec{v}]_{\beta} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ since $\vec{v} = [\cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 2 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}]$.
And $[T(\vec{v})]_{\beta} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ since $T(\vec{v}) = \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 3 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
And we have that
 $[T]_{\beta}^{\beta} [\vec{v}]_{\beta} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} = [T(\vec{v})]_{\beta}$.
T(\vec{v})'s
protective generatives
Let'r now change bases.
Let'r now change bases.
Let'r now change bases.
Let's pick β -coordinates for the input to T
Lets pick β -coordinates for the output.
(and β' -coordinates for the output.
 R^{2} $[T]_{\beta}^{\beta'}$ $[R^{2}]$
coordinates

Let's calculate
$$[T]_{\beta}^{\beta'}$$
.
We have
 $T(\binom{1}{2}) = \binom{1+0}{2-0} = \binom{1}{2} = a\binom{1}{1} + c\binom{-1}{1}$
 $T(\binom{0}{1}) = \binom{0+1}{0-1} = \binom{1}{-1} = b\binom{1}{1} + d\binom{-1}{1}$
plug & into T find the β' coordinates

Let's find a
$$c$$
 first.
Need to solve:
 $\binom{1}{2} = a\binom{1}{1} + c\binom{-1}{1} \rightarrow \binom{1}{2} = \binom{a-c}{a+c} \rightarrow a-c=1 \\ a+c=2 \rightarrow c=1/2 \\ c=1/2 \\ c=1/2 \\ c=1/2 \\ b+d=-1 \rightarrow b=0 \\ d=-1 \\ b+d=-1 \end{pmatrix}$

Thus,

$$T(\frac{1}{2}) = (\frac{1}{2}) = \frac{3}{2} (\frac{1}{2}) + \frac{1}{2} (\frac{-1}{2})$$

$$T(\frac{9}{2}) = (\frac{1}{2}) = 0 (\frac{1}{2}) - 1 \cdot (\frac{-1}{2})$$
So,

$$\begin{bmatrix} T \end{bmatrix}_{\beta}^{\beta'} = \left(\begin{bmatrix} T \begin{pmatrix} b \end{pmatrix} \end{bmatrix}_{\beta'} \middle| \begin{bmatrix} T \begin{pmatrix} 0 \end{pmatrix} \end{bmatrix}_{\beta'} \right)$$

$$= \left(\begin{bmatrix} \binom{1}{2} \end{bmatrix}_{\beta'} \right) \begin{bmatrix} \binom{1}{-1} \end{bmatrix}_{\beta'} = \begin{pmatrix} 3/2 & 0 \\ 1/2 & -1 \end{pmatrix}$$

How do we use this?

$$\begin{bmatrix}T\end{bmatrix}_{\beta}^{p'} \text{ computes } T. \text{ It takes as inputs}$$

$$\begin{bmatrix}F \cdot courdinates \text{ and } uutputs \text{ } B^{-} \text{ courdinates.} \\ B - \text{ coordinates } and \text{ } uutputs \text{ } B^{-} \text{ courdinates.} \\ For example, take again $\vec{V} = \begin{pmatrix}1\\2\end{pmatrix}.$

$$\begin{bmatrix}V \cdot c \\ 2-z \end{pmatrix} = \begin{pmatrix}3\\0\end{pmatrix}.$$

$$\begin{bmatrix}V \cdot c \\ 2-z \end{pmatrix} = \begin{pmatrix}2\\0\end{pmatrix}.$$
We know that $\begin{bmatrix}V \\ 2\\z \end{bmatrix}_{\beta} = \begin{pmatrix}1\\z \end{pmatrix}$ because

$$\vec{V} = \begin{pmatrix}1\\z \end{pmatrix} = 1 \cdot \begin{pmatrix}0\\z \end{pmatrix} + 2 \cdot \begin{pmatrix}0\\z \end{pmatrix}$$$$

And,

$$\begin{bmatrix} T \end{bmatrix}_{\beta}^{\beta'} \begin{bmatrix} y \\ v \end{bmatrix}_{\beta} = \begin{pmatrix} 3/2 & 0 \\ 1/2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3/2+0 \\ 1/2-2 \end{pmatrix} = \begin{pmatrix} 3/2 \\ -3/2 \end{pmatrix}$$
Let's show that $\begin{pmatrix} 3/2 \\ -3/2 \end{pmatrix} = \begin{bmatrix} T(\vec{v}) \end{bmatrix}_{\beta'}$
This is true because

$$\frac{3}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} = T(\frac{3}{V})$$
This demonstrates $\begin{pmatrix} 3 \\ 0 \end{pmatrix}'$ s β' -coordinates.
This demonstrates $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$'s β' -coordinates.
END OF EXAMPLE

One cool thing about linear transformations is that they show you what matrix products are doing. They are the composition of their couresponding linear transformations.

Theorem: Let
$$T: \mathbb{R}^n \to \mathbb{R}^m$$
 and $S: \mathbb{R}^n \to \mathbb{R}^k$
be linear transformations where
 $T(\vec{v}) = A\vec{v}$ and $S(\vec{w}) = B\vec{w}$
where A is mxn and B is kxm.
where A is mxn and B is kxm.
then, SoT is a linear transformation and
 $(S \circ T)(\vec{v}) = BA\vec{v}$
Here $(S \circ T)(\vec{v}) = S(T(\vec{v}))$ is function
composition

$$\frac{pr_{oo}f:}{(S \circ T)(\vec{v})} = S(T(\vec{v})) = S(A\vec{v}) = BA\vec{v}$$

$$\begin{array}{l}
\underbrace{\mathsf{Ex:} \ \mathsf{Let}}\\
\mathsf{T:} \ \mathbb{R}^{2} \to \mathbb{R}^{2} \ be \ \mathsf{T}(\overset{\mathsf{x}}{y}) = \begin{pmatrix}\mathsf{x}+\overset{\mathsf{y}}{2x-\overset{\mathsf{y}}{y}}\end{pmatrix}\\
\mathsf{S:} \ \mathbb{R}^{2} \to \mathbb{R}^{3} \ be \ \mathsf{S}(\overset{\mathsf{a}}{b}) = \begin{pmatrix}\mathsf{a}^{\ast}_{b}\overset{\mathsf{b}}{2x}\end{pmatrix}^{*}\\
\mathsf{Then,} \ \mathsf{T}(\overset{\mathsf{x}}{y}) = \begin{pmatrix}\begin{pmatrix}\mathsf{i} & \mathsf{i} \\ 2 & -\mathsf{i}\end{pmatrix}\begin{pmatrix}\mathsf{x} \\ \mathsf{y}\end{pmatrix} \ \mathsf{and} \ \mathsf{S}(\overset{\mathsf{a}}{b}) = \begin{pmatrix}\begin{pmatrix}\mathsf{i} & \mathsf{i} \\ 1 & \mathsf{i} \\ 2 & \mathsf{o}\end{pmatrix}\begin{pmatrix}\mathsf{a} \\ \mathsf{b}\end{pmatrix}\\
\mathsf{We have} \ \mathsf{A} \ \mathsf{Bave} \ \mathsf{A} \ \mathsf{S}(\overset{\mathsf{a}}{y}) = \mathsf{S}(\mathsf{T}(\overset{\mathsf{x}}{y})) \\
= \mathsf{S}(\overset{\mathsf{x}+\overset{\mathsf{y}}{y}) = \mathsf{S}(\mathsf{T}(\overset{\mathsf{x}}{y})) \\
= \mathsf{S}(\overset{\mathsf{x}+\overset{\mathsf{y}}{y}+2x-\overset{\mathsf{y}}{y}) \\
= \begin{pmatrix}\begin{pmatrix}\mathsf{x}+\overset{\mathsf{x}}{y}\\\mathsf{x}+zy\end{pmatrix} \ \mathsf{And}, \\
\mathsf{BA}(\overset{\mathsf{x}}{y}) = \begin{pmatrix}\begin{pmatrix}\mathsf{i} & \mathsf{o} \\ 1 & \mathsf{i} \\ 2 & \mathsf{o}\end{pmatrix}\begin{pmatrix}\mathsf{i} & \mathsf{i} \\ 2 & \mathsf{o}\end{pmatrix}\begin{pmatrix}\mathsf{x} \\ \mathsf{y}\end{pmatrix} = \begin{pmatrix}\mathsf{i} & \mathsf{i} \\ 3 & \mathsf{o} \\ \mathsf{z} \\\mathsf{x}+zy\end{pmatrix} \ \mathsf{A} \ \mathsf{L} \\
\end{array}$$

$$S_{y}$$

 $(S_{0}T)(\overset{x}{y}) = BA(\overset{x}{y})$